Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a* }}$ Sevim
Türktekin, ${ }^{\text {a }}$ Yamna Baryala, ${ }^{\text {b }}$ Abdelfettah Zerzouf, ${ }^{\text {b }}$ Moussa Salem, ${ }^{\text {b }}$ El-Mokhtar Essassi ${ }^{\text {c }}$ and Orhan Büyükgüngör ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Laboratoire de Chimie Organique et Etudes Physicochimiques, EN S Rabat, Morocco, ${ }^{\text {c }}$ Laboratoire de Chimie Organique Hétérocyclique, Faculté des Sciences, Université Mohammed V, Agdal Avenue Ibn Battota, BP 1014 Rabat, Morocco, and ${ }^{\text {d Department of }}$ Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.082$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Ethyl 3-methyl-1-oxo-4H-1,4-benzothiazine-2-carboxylate

The crystal structure of the title compound, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$, is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which are formed between the NH groups and the sulfoxide O atoms.

Comment

1,4-Benzothiazine and its derivatives possess excellent biological and pharmacological activities, such as anti-inflammatory (Krapcho \& Turk, 1973), antimicrobial (Sastry et al., 1990), antifungal (Chaffman \& Brogden, 1985), calcium antagonist (Aotsuka et al., 1994) and antihypertensive (Kando \& Hashimoto, 1993; Keita et al., 2000). The reaction of $2,2^{\prime}$ dithiodianiline with ethyl acetoacetat gave the title compound, (I), besides other products.

(I)

The molecular structure of (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The bond lengths and angles are normal when compared with similar structures in the Cambridge Structural Database (Version 5.26; Allen, 2002). The puckering parameters are $Q_{\mathrm{T}}=$ 0.290 (2) $\AA, \theta=113.7$ (4) ${ }^{\circ}$ and $\varphi=166.6$ (5) ${ }^{\circ}$ (Cremer \& Pople, 1975). The $\mathrm{S} 1=\mathrm{O} 1$ double bond $[1.5083$ (19) $\AA]$ makes angles of $79.36(9)$ and $78.60(11)^{\circ}$ with the least-squares planes of the $\mathrm{S} 1 / \mathrm{C} 6 / \mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 8 / \mathrm{C} 7$ and $\mathrm{C} 1-\mathrm{C} 6$ rings, respectively.

The crystal structure of (I) is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that form between the NH groups and the sulfoxide O atoms of symmetry-related molecules (Fig. 2 and Table 2).

Experimental

A mixture of dithiodianiline ($5 \mathrm{~g}, 0.02 \mathrm{~mol}$) and ethyl acetoacetate $(5.3 \mathrm{~g}, 0.04 \mathrm{~mol})$ was refluxed with stirring for 3 h . Absolute ethanol (10 ml) was added and stirring was continued at reflux for 1 h . On cooling, (I) ($0.5 \mathrm{~g}, 10 \%$ yield) was collected by filtration (m.p. 447449 K). Recrystallization from ethanol gave yellow crystals. IR (KBr , cm^{-1}): v 2983-2955, 2900, 1696; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): δ $1.38\left(t, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.34\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.04-$ 7.86 (m, Harm), 11.25 ($s, 1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$,

Received 18 July 2005 Accepted 22 July 2005 Online 27 July 2005
p.p.m.): $\delta 14.6,21.0,61.1,118.7,123.4,125.3,130.0,132.1,134.2,153.4$, 165.5.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=251.30$
Orthorhombic, Fdd2
$a=12.9935$ (13) \AA
$b=33.042(4) \AA$
$c=11.1555$ (13) \AA
$V=4789.4(9) \AA^{3}$
$Z=16$
$D_{x}=1.394 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.861, T_{\text {max }}=0.974$
6798 measured reflections
2369 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.082$
$S=1.00$
2369 reflections
157 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0541 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

Mo $K \alpha$ radiation
Cell parameters from 9568 reflections
$\theta=2.5-27.3^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, pale yellow
$0.58 \times 0.32 \times 0.10 \mathrm{~mm}$

2037 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.2^{\circ}$
$h=-16 \rightarrow 16$
$k=-41 \rightarrow 40$
$l=-12 \rightarrow 14$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 Extinction coefficient: 0.0009 (2) Absolute structure: Flack (1983), 977 Friedel pairs
Flack parameter: 0.001 (3)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

S1-O1	$1.5083(19)$	$\mathrm{O} 3-\mathrm{C} 10$	$1.343(3)$
S1-C6	$1.760(2)$	$\mathrm{O} 3-\mathrm{C} 11$	$1.444(3)$
S1-C7	$1.750(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.384(3)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.208(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.348(3)$
O1-S1-C6	$105.70(10)$	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 8$	$123.31(17)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 7$	$107.63(10)$	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 10$	$114.57(16)$
$\mathrm{C} 6-\mathrm{S} 1-\mathrm{C} 7$	$98.03(10)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$121.85(19)$
C10-O3-C11	$117.42(19)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$113.71(19)$
C1-N1-C8	$125.23(19)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 3$	$122.6(2)$
N1-C1-C6	$121.43(19)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 7$	$126.3(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$119.2(2)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 7$	$111.06(19)$
S1-C6-C5	$116.28(16)$	$\mathrm{O} 3-\mathrm{C} 11-\mathrm{C} 12$	$111.4(3)$
S1-C6-C1	$123.65(17)$		
O1-S1-C6-C5	$85.45(18)$	$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$9.1(3)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 8$	$82.2(2)$	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$17.5(3)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 10$	$-89.56(17)$	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-162.10(18)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 6-\mathrm{C} 1$	$-89.75(19)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10-\mathrm{O} 2$	$13.1(4)$
S1-C7-C10-O2	$-175.0(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10-\mathrm{O} 3$	$-167.3(2)$
$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$-171.3(2)$	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 10-\mathrm{O} 3$	$4.6(2)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{i}}$	0.86	1.96	$2.821(3)$	175

Symmetry code: (i) $-x,-y+\frac{1}{2},+z+\frac{1}{2}$.

All H atoms were included in calculated positions and refined using a riding model, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$,

Figure 1
A view of the molecular structure of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 2
A view of the hydrogen bonding (dashed lines) in compound (I). H atoms not involved in hydrogen bonding have been omitted.
and with $\mathrm{C}-\mathrm{H}=0.93,0.96$ and $0.97 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other C atoms.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mays University, Turkey, for the use of the diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Aotsuka, T., Hosono, H., Kurihara, T., Nukihara, Y., Matusi, T. \& Kobayashi, F. (1994). Chem. Pharm. Bull. 42, 1264-1271.

Chaffman, M. \& Brogden, R. N. (1985). Drugs, 29, 387-454.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kando, A. \& Hashimoto, O. (1993). Jpn. J. Pharmacol. 63, 121-126.
Keita, A., Essassi, E. M. \& Salem, M. (2000). J. Soc. Chim. Tunis. 4, 747-752.
Krapcho, J. \& Turk, C. F. (1973). J. Med. Chem. 16, 776-779.
Sastry, C. V. R., Rao, K. S., Krishnan, V. S. H. \& Rastog, K. (1990). Indian J. Chem. Sect. B, 29, 297-299.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie GmbH, Darmstadt, Germany.

[^0]: © 2005 International Union of Crystallography

